TECHNICAL PRODUCT DATASHEET

Electronic Throttle
(Analog version)

P/N 119971
1. REVISION LOG .. 2
2. PART NUMBERS ... 3
 2.1. SYSTEM PART NUMBERS ... 3
3. OVERVIEW .. 4
 3.1. PRODUCT DESCRIPTION ... 4
 3.2. THROTTLE READY LED INDICATOR .. 5
 3.3. ACTIVE LED INDICATOR .. 5
 3.4. CONTROL KNOB ... 5
 3.5. IDLE BUTTON .. 5
4. CONFIGURATION .. 6
 4.1. ENTERING PASSWORDS ... 6
 4.2. INTERLOCK POLARITY .. 6
 4.2.1. Positive polarity (default) ... 7
 4.2.2. Ground polarity ... 7
 4.3. KNOB ROTATION .. 7
 4.3.1. Clockwise rotation increases RPM (default) .. 7
 4.3.2. Counter-clockwise rotation increases RPM .. 7
 4.4. INITIAL DEADBAND CLICKS .. 8
 4.5. LOAD DEFAULTS .. 8
 4.6. ENGINE RPM RANGE CONFIGURATION .. 8
 4.6.1. Idle RPM configuration .. 9
 4.6.2. Maximum RPM configuration ... 9
 4.7. OUTPUT RAMP RATE ... 9
5. OPERATION .. 10
 5.1. INITIALIZATION .. 10
 5.2. INTERLOCKING (ENABLING THE TWISTER) ... 10
 5.3. CONTROLLING ENGINE SPEED .. 11
 5.3.1. Returning the engine speed to idle ... 12
6. MOUNTING & INSTALLATION .. 13
 6.1. PANEL CUTOUT DIMENSIONS .. 13
 6.2. TWISTER SIDE-VIEW DIMENSIONS .. 13
 6.3. MAINTENANCE .. 14
7. WIRING .. 14
 7.1. TWISTER CONNECTOR .. 14
 7.2. TWISTER WIRING .. 14
8. TECHNICAL DETAILS .. 15
9. REFERENCES .. 16
 9.1. LIST OF FIGURES ... 16
 9.2. LIST OF TABLES ... 16
 9.3. LIST OF PASSWORDS .. 16
1. Revision Log

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>11/16/2009</td>
<td>Initial revision</td>
</tr>
<tr>
<td>1.10</td>
<td>9/7/2010</td>
<td>Clarified password entry.</td>
</tr>
<tr>
<td>1.20</td>
<td>10/1/2010</td>
<td>Added passwords for “slow” output mode</td>
</tr>
</tbody>
</table>

Product specifications in this manual are subject to change without notice.
2. Part numbers

2.1. System part numbers

Twister Electronic Throttle (analog) system kit
Kit includes
- Twister Electronic Throttle (analog) QTY-1 119971
- Twister main system harness QTY-1 120430
- Knob rotation direction label set QTY-1 120462

Documentation (available from Class 1’s website - www.class1.com)
- Twister Electronic Throttle Manual (this manual) 120478
- Twister Quick Manual 120319
3. Overview

3.1. Product description

The Twister Electronic Throttle (p/n 119971) controls engine speed using a variable analog voltage connected to the engine ECM for remote throttle applications. The Twister’s analog voltage range is 0.235 volts to 4.448 volts and the minimum (idle) and maximum voltages can be configured between the standard range for specific engine manufacturer requirements (refer to section 4.6).

The Twister utilizes Light Emitting Diodes (LED) to convey status information to the operator. The green THROTTLE READY LED is on the left-side of the control knob and the blue ACTIVE LED is on the right-side of the control knob.

The Twister has a control knob and an idle button for the operator to control engine speed. The control knob allows manipulation of the engine speed within the configured (and engine allowable) RPM range. The idle button returns the engine speed to the configured idle RPM.

Figure 1. Twister controls and indicators.

THROTTLE READY LED section 3.2
ACTIVE LED section 3.3
Control knob section 3.4
Idle button section 3.5
3.2. Throttle ready LED indicator

The green THROTTLE READY LED indicator shows the status of the Twister interlock input (pin 3) and analog signal diagnostic information.

<table>
<thead>
<tr>
<th>LED state</th>
<th>Throttle control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>PERMITTED</td>
<td>Twister interlock input (pin 3) is active.</td>
</tr>
<tr>
<td>OFF</td>
<td>NOT PERMITTED</td>
<td>Twister interlock input (pin 3) is NOT active.</td>
</tr>
<tr>
<td>FAST FLASH</td>
<td>NOT PERMITTED</td>
<td>Analog signal error (voltage too low). Verify analog +5 VDC reference and signal line voltage.</td>
</tr>
<tr>
<td>DOUBLE BLINK</td>
<td>NOT PERMITTED</td>
<td>Analog signal error (voltage too high). Verify analog ground reference and signal line voltage.</td>
</tr>
</tbody>
</table>

Table 1. Throttle ready LED states.

3.3. Active LED indicator

The blue ACTIVE LED indicator shows the status of the Twister control.

<table>
<thead>
<tr>
<th>LED state</th>
<th>Throttle control</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ACTIVE</td>
<td>The twister is in control of engine RPM.</td>
</tr>
<tr>
<td>OFF</td>
<td>NOT ACTIVE</td>
<td>The Twister is not controlling the engine RPM (engine at idle).</td>
</tr>
<tr>
<td>FLASHING</td>
<td>AT RPM LIMIT</td>
<td>The Twister’s control knob is being rotated while the analog output signal voltage is already at the configured limit (minimum or maximum).</td>
</tr>
</tbody>
</table>

Table 2. Active LED states.

3.4. Control knob

The control knob is the operator’s interface for RPM control. The control knob is rotated to change the engine speed (RPM). The control knob can be configured to increase engine speed with clockwise or counter-clockwise rotation (section 4.3).

3.5. Idle button

The idle button is the operator’s interface to return the engine’s speed to its idle RPM. Press and hold the idle button for a half-second to ramp the engine speed to idle and release active engine control from the Twister. The Twister ramps the output signal down at a rate of 0.9 volts per second.
4. Configuration

4.1. Entering passwords

The Twister utilizes passwords to modify its operational parameters. All operational parameters are stored in memory and will not be lost when power is disconnected.

To enter a password:

- **Press and hold** the IDLE button until the **ACTIVE** LED blinks twice (two seconds). **Continue holding** the IDLE button while entering the password.

- A clockwise 💫 rotation will turn the **ACTIVE** LED ON for a half-second and a counter-clockwise 🔄 rotation will turn the **THROTTLE READY** LED ON for a half-second. **Wait for the LED indication to turn OFF before rotating the knob again.**

- A rotation consists of at least one tactile click and a single rotation event is complete when the knob remains stationary for at least half a second.

If an error is made while entering a password, release the IDLE button to clear and then re-attempt the password from the beginning.

Invalid password entry

The **THROTTLE READY** and **ACTIVE** LEDs will quickly flash numerous times to indicate an attempted password is invalid.
4.2. Interlock polarity

The Twister interlock input (pin 3) must be active before control of the engine speed is possible. The Twister interlock input can be configured for positive (default) or ground input polarity.

4.2.1. Positive polarity (default)

Positive polarity interlock configuration password:

![Positive polarity interlock configuration password]

4.2.2. Ground polarity

Ground polarity interlock configuration password:

![Ground polarity interlock configuration password]

4.3. Control knob rotation

The control knob can be configured to increase engine RPM with clockwise or counter-clockwise rotation. Included with the Twister is a label set (p/n 120462) which contains a clockwise increase and a counter-clockwise increase label. Affix the label to the Twister which indicates the configured knob rotation direction.

![Figure 3. Rotation direction labels (p/n 120462).]

4.3.1. Clockwise rotation increases RPM (default)

Clockwise knob rotation configuration password:

![Clockwise knob rotation configuration password]

4.3.2. Counter-clockwise rotation increases RPM

Clockwise knob rotation configuration password:

![Counter-clockwise knob rotation configuration password]
4.4. Initial deadband clicks

The Twister requires a number of tactile clicks of the control knob in the increase direction before it will allow engine control. The default number of tactile clicks is five (5) but can be changed to one (1) or ten (10).

Initial deadband clicks required = 1:

\[\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \]

Initial deadband clicks required = 5 (default):

\[\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \]

Initial deadband clicks required = 10:

\[\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \]

4.5. Load defaults

The Twister's default configurations are:

- Knob increase direction: Clockwise
- Interlock polarity: Positive voltage
- Maximum output signal voltage: 3.990 VDC
- Idle output signal voltage: 0.235 VDC
- Control knob initial dead band: 5 initial tactile clicks

4.6. Engine RPM range configuration

The Twister allows configuration of its idle output signal voltage and maximum output signal voltage which directly affects the engine's RPM range. The defaults are 0.235 volts at idle and 3.990 volts at maximum.

The idle offset voltage level affects the Twister's maximum voltage level. When the idle offset voltage is configured to its lowest level (0.235 volts) the maximum attainable voltage is 3.990 volts. When the idle offset voltage is configured to its maximum level (2.392 volts) the maximum attainable voltage is 4.448 volts. The graph below (Figure 4) shows the relationship between the configured idle offset voltage and its associated maximum voltage level.

![Figure 4. Idle offset voltage versus maximum voltage.](image-url)
4.6.1. **Idle RPM configuration**

Enter the password:

```
---
```

Release the IDLE button.

The Twister sets its output signal voltage to the lowest point. Use the control knob to increase the output signal voltage until the engine begins to increase its RPM. Use the control knob to find the base limit of control and then press the IDLE button to save the output signal voltage as the idle voltage.

Engine manufacturers will program their ECMs for a curb idle. The Twister cannot force the engine ECM to attain a lower RPM than the manufacturers curb idle.

4.6.2. **Maximum RPM configuration**

Enter the password:

```
---
```

Release the IDLE button.

The Twister sets its output signal voltage the configured idle voltage. Use the control knob to increase the output signal voltage until the desired maximum RPM is attained. Press the IDLE button to save the output signal voltage as the maximum voltage.

Engine manufacturers will program their ECMs for a maximum safe RPM limit. The Twister cannot force the engine ECM to attain more RPM than the manufacturers limit.

4.7. **Output Ramp Rate**

The Twister (software version 1.2 and above) can be set for two different output ramp rates. The normal mode, which is the default, increases/decreases the output signal voltage for every click of the control knob. The slow mode increases/decreases the output signal voltage for every two clicks of the control knob, effectively creating a slower response to the user input. In slow mode, the ramp time when returning to IDLE using the IDLE button is also twice as long. The slow mode can be useful in matching the Twister to certain engines if the default ramp speeds are too fast.

Normal Mode (default):

```
---
```

Slow Mode:

```
---
```
5. Operation

5.1. Initialization

The Twister uses a two (2) second initialization cycle. The green throttle ready LED and blue active LED will be ON during the initialization. The Twister will then begin normal operation.

![Twister initialization](image)

Figure 5. Twister initialization.

5.2. Interlocking (enabling the Twister)

The Twister will not allow control of the engine speed until the interlock input (pin 3) has been activated. The interlock input is activated when the proper voltage level is applied. The interlock voltage can be configured for system voltage (default) or system ground (see section 0).

Figure 4 illustrates a typical interlocking scheme with the Twister’s interlock configured for system voltage. In this example the OEM makes certain that the park brake and transmission are in the proper modes before allowing system voltage to pass through to the Twister’s interlock input (pin 3).

![Throttle ready LED](image)

The Twister’s green throttle ready LED will be ON when the proper voltage is applied to the interlock input. This indicates that the Twister is ready for operator initiated control via the control knob. Refer to table Table 1 in section 3.2 for a description of the throttle ready LED status indication.

![The OEM is responsible for creating a safe interlocking scheme to enable the Twister.](image)

The OEM is responsible for creating a safe interlocking scheme to enable the Twister.
5.3. Controlling engine speed

The Twister allows the operator to control the engine’s speed by rotating the control knob as long as the interlock is active. The blue ACTIVE LED will be ON once the control knob has been rotated in the increase RPM direction enough clicks to overcome the configured initial deadband (default is 5 clicks).

Each tactile click of the control knob equals a 0.014 volt increase of the analog output signal voltage. With most manufacturers this equals from 5 to 10 RPM per tactile click.

![ACTIVE LED](image1)

Figure 7. Active LED.

The blue ACTIVE LED indicator shows the status of the twister control (see Table 2 in section 3.3). The ACTIVE LED will blink when the control knob is being rotated while the output signal voltage is already at the configured limit (minimum or maximum voltage).

5.3.1. Control knob initial deadband

The Twister requires a number tactile clicks of the control knob in the increase direction before it will allow engine control. This initial deadband keeps the Twister from inadvertently controlling engine speed caused by accidental bumps, vibration, etc. The default number of tactile clicks is five (5) with each click occurring within a half-second of the last. The blue ACTIVE LED activates and throttle control is allowed once the number of tactile clicks has been established.

![Initial deadband explanation](image2)

Figure 8. Initial deadband explanation.
In the previous graphic (Figure 8) the first three tactile clicks are more than a half-second apart and are not counted for the required number of deadband clicks. The next series of tactile clicks are a half-second (or less) apart and the deadband counter counts each one up to the required number of clicks (5). The Twister then activates the blue ACTIVE LED and allows active throttle control. Subsequent tactile clicks change the RPM of the engine and the timing between clicks is not important. The initial deadband requirement will not be required again until the IDLE button has been pressed and the engine RPM has been reduced to curb idle.

5.3.2. Returning the engine speed to idle

Press the idle button for a half-second to return the engine speed to idle. The twister will ramp the engine speed from the current RPM down to the configured idle RPM at which time the blue ACTIVE LED will turn OFF to indicate that idle has been reached.
6. Mounting & installation

6.1. Panel cutout dimensions

Mount the Twister on the operator's panel with four #6 screws and nuts.

![Panel cutout diagram]

Figure 10. Installation dimensions in inches [millimeters].

6.2. Twister side-view dimensions

![Side view diagram]

Figure 11. Side view dimensions in inches [millimeters].
6.3. **Maintenance**

The Twister does not require regular maintenance. The control knob does not require lubrication.

7. **Wiring**

7.1. **Twister connector**

The module has one connector and the following definitions apply:

<table>
<thead>
<tr>
<th>PIN</th>
<th>CIRCUIT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SYS POWER</td>
<td>(INPUT) – battery voltage (+9VDC...+32VDC)</td>
</tr>
<tr>
<td>2</td>
<td>SYS GROUND</td>
<td>(INPUT) – battery ground</td>
</tr>
<tr>
<td>3</td>
<td>INTERLOCK</td>
<td>(INPUT) – Positive/Ground polarity (configurable)</td>
</tr>
<tr>
<td>4</td>
<td>SIGNAL REF +</td>
<td>(INPUT) – ECM reference voltage, +5 VDC</td>
</tr>
<tr>
<td>5</td>
<td>SIGNAL REF -</td>
<td>(INPUT) – ECM reference voltage, ground</td>
</tr>
<tr>
<td>6</td>
<td>OUTPUT SIG</td>
<td>(OUTPUT) – ECM remote throttle control voltage</td>
</tr>
</tbody>
</table>

7.2. **Twister wiring**

Figure 12. Twister harness connections.
8. Technical Details

<table>
<thead>
<tr>
<th>Product category</th>
<th>Throttle control (analog)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage range</td>
<td></td>
</tr>
<tr>
<td>+9VDC…+32VDC</td>
<td></td>
</tr>
<tr>
<td>Maximum current draw</td>
<td>Logic supply+ input (pin 1 of 6-pin connector)</td>
</tr>
<tr>
<td>@13.8VDC</td>
<td>240 mA</td>
</tr>
<tr>
<td>@27.6VDC</td>
<td>163 mA</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-40°F...+185°F (-40°C...+85°C)</td>
</tr>
<tr>
<td>Environmental range</td>
<td>IP 67</td>
</tr>
<tr>
<td>LED</td>
<td>2 LEDs (green and blue) to indicate status</td>
</tr>
<tr>
<td>Electrical protection</td>
<td>Internal thermal fuse (750mA on pin 1 of black 6-pin connector)</td>
</tr>
<tr>
<td></td>
<td>Transient voltage protected to SAE J1113 specification for heavy duty trucks (24V)</td>
</tr>
<tr>
<td></td>
<td>Load dump voltage protected to SAE J1113 specification for heavy duty trucks (24V)</td>
</tr>
<tr>
<td>Electrical performance</td>
<td></td>
</tr>
<tr>
<td>Immunity to Radiated Electromagnetic Fields—Bulk Current Injection (BCI) method, Class C device</td>
<td>SAE J1113-4</td>
</tr>
<tr>
<td>Reverse voltage protection on power leads (pins 1 and 2 of 6-pin connector), Class C device</td>
<td>ISO 16750-2</td>
</tr>
<tr>
<td>Overvoltage due to failing generator, Class A device</td>
<td>ISO 16750-2</td>
</tr>
<tr>
<td>Immunity to conducted transients on power leads, Class C device (24V)</td>
<td>SAE J1113-11</td>
</tr>
<tr>
<td>Immunity to Electrostatic Discharge—powered and unpowered modes</td>
<td>SAE J1113-13</td>
</tr>
<tr>
<td>Immunity to radiated electromagnetic fields, Class C device</td>
<td>SAE J1113-21</td>
</tr>
<tr>
<td>Conducted emission on power leads (level 3 limits)</td>
<td>SAE J1113-41</td>
</tr>
<tr>
<td>Radiated emissions, absorber-lined shielded enclosure (level 2 limits)</td>
<td>SAE J1113-41</td>
</tr>
<tr>
<td>Reset behavior on voltage drop 24V, Class C device</td>
<td>ISO 16750-2</td>
</tr>
<tr>
<td>Thermal shock</td>
<td>SAE J1455 (sec 4.1.3.2)</td>
</tr>
<tr>
<td>Thermal shock due to splash</td>
<td>Class 1 (STD-0001)</td>
</tr>
<tr>
<td>Pressure cleaning</td>
<td>SAE J1455 (sec 4.4)</td>
</tr>
<tr>
<td>Exposure to salt spray atmosphere/fog</td>
<td>SAE J1455 (sec 4.3)</td>
</tr>
<tr>
<td>Exposure to outdoor UV</td>
<td>ISO 4892-2 (method A)</td>
</tr>
<tr>
<td>Resonance dwell</td>
<td>SAE J1455 (sec 4.9.4.1)</td>
</tr>
<tr>
<td>Random vibration</td>
<td>SAE J1455 (sec 4.9.4.2)</td>
</tr>
<tr>
<td>Mechanical shock</td>
<td>SAE J1455 (sec 4.10.3.4)</td>
</tr>
</tbody>
</table>

Dimensions (W x H x D) in inches [millimeters]
4.438 [112.73] x 3.188 [80.98] x 2.312 [58.74]

Weight in ounces [grams]
22.8 [646.4]
9. References

9.1. List of figures

FIGURE 1. TWISTER CONTROLS AND INDICATORS.. 4
FIGURE 2. PASSWORD ENTRY MODE... 6
FIGURE 3. ROTATION DIRECTION LABELS (p/n 120462).. 7
FIGURE 4. IDLE OFFSET VOLTAGE VERSUS MAXIMUM VOLTAGE...................... 8
FIGURE 5. TWISTER INITIALIZATION... 10
FIGURE 6. TWISTER INTERLOCKING EXAMPLE.. 10
FIGURE 7. ACTIVE LED... 11
FIGURE 8. INITIAL DEADBAND EXPLANATION... 11
FIGURE 9. PRESSING THE IDLE BUTTON... 12
FIGURE 10. INSTALLATION DIMENSIONS IN INCHES [MILLIMETERS]..................... 13
FIGURE 11. SIDE VIEW DIMENSIONS IN INCHES [MILLIMETERS]......................... 13
FIGURE 12. TWISTER HARNESS CONNECTIONS.. 14

9.2. List of tables

TABLE 1. THROTTLE READY LED STATES.. 5
TABLE 2. ACTIVE LED STATES... 5

9.3. List of passwords

Passwords are entered by pressing and holding the IDLE button while rotating the control knob (see section 4.1). The “rotate” column in the tables below show the control knob rotation directions with 1’s indicating a clockwise rotation and 0’s indicating a counter-clockwise rotation.

User passwords

<table>
<thead>
<tr>
<th>Function</th>
<th>Rotate</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control knob direction – counter-clockwise increases engine speed</td>
<td>10010000</td>
<td>90</td>
</tr>
<tr>
<td>Control knob direction – clockwise increases engine speed</td>
<td>10010001</td>
<td>91</td>
</tr>
<tr>
<td>Configure idle RPM</td>
<td>01100101</td>
<td>65</td>
</tr>
<tr>
<td>Configure maximum RPM</td>
<td>10010111</td>
<td>97</td>
</tr>
</tbody>
</table>

OEM passwords

<table>
<thead>
<tr>
<th>Function</th>
<th>Rotate</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interlock polarity – ground input ACTIVE</td>
<td>111010000000</td>
<td>E80</td>
</tr>
<tr>
<td>Interlock polarity – positive input ACTIVE</td>
<td>111010000001</td>
<td>E81</td>
</tr>
<tr>
<td>Control knob initial deadband – 1 tactile click</td>
<td>111000000001</td>
<td>E01</td>
</tr>
<tr>
<td>Control knob initial deadband – 5 tactile clicks</td>
<td>111000000101</td>
<td>E05</td>
</tr>
<tr>
<td>Control knob initial deadband – 10 tactile clicks</td>
<td>11100001010</td>
<td>E0A</td>
</tr>
<tr>
<td>Load default configurations</td>
<td>111011110000</td>
<td>EF0</td>
</tr>
<tr>
<td>Set output ramp rate to SLOW</td>
<td>111010100001</td>
<td>EA1</td>
</tr>
<tr>
<td>Set output ramp rate to NORMAL</td>
<td>111010100000</td>
<td>EA0</td>
</tr>
</tbody>
</table>

Bold text indicates the default configurations.