CBP Single Stage
High Volume Attack/Booster Pump

Features and Benefits

High performance — Ideally suited for initial attack, booster, transfer auxiliary pump duty. Fully meets NFPA 1901 standards for auxiliary pump applications. Non-rated performance will provide volumes up to 400 GPM at 100 PSI from booster tank operation; 50 GPM @ 400 PSI

Hard, fine grain bronze, mixed flow impeller design — Hand ground and balanced for maximum performance

Spring loaded mechanical pump seal — Self-adjusting and self-lubricating

Heavy-duty precision ground, deep groove bearings — To ensure maximum life

Choice of 4 pump ratios — For optimum pump performance; matches most PTO/engine transmission combinations

Available in engine or opposite engine rotation — Maximizes PTO and transmission selector

Universal discharge design — 8 possible positions for optimum installation

Corrosion resistant integrated pump shaft and gear — One piece design for increased strength, minimizes shaft deflection; no need for outboard bearing support

Available in engine or opposite engine rotation — Maximizes PTO and transmission selector

Bronze clearance rings — Easily replaceable

Technical Specifications

Pump
Type: Single-stage centrifugal pump driven by truck transmission power take-off (PTO); engine or opposite engine rotation.

Pump ratios: 2.00:1 (CBP2); 2.83:1 (CBP3); 3.94:1 (CBP4); 4.93:1 (CBP5)

Suction: 3” female NPT thread/4” Victaulic

Discharge: 2” female NPT thread/115 flange

Volute and head: Heavy duty fine grain alloy cast iron; 30,000 PSI tensile strength

Impeller: Hard, fine grain bronze, fully machined and hand balanced, with smooth internal waterways and mixed flow vanes for maximum efficiency

Shaft: Heat treated, corrosion resistant, one-piece integrated shaft and gear

Shaft seal: Long-life, maintenance-free, self adjusting mechanical seal

Testing: Hydrostatic and performance tested. Tested and certified for NFPA rating at 250 GPM if required (must be requested when ordered).

Gearbox
Type: Positive gear drive for low maintenance

Gears: High quality, heat treated steel alloy; spur-cut design

Bearings: Heavy-duty precision ground for maximum performance and long life.

Housing: Fine grain cast iron, 30,000 PSI tensile strength.

Optional Accessories

NFPA Certification (250 GPM)
Bronze Pump Body
Electric rotary vane priming systems
Relief valve systems/Governors
Thermal Relief Valve
Auxiliary gearbox cooling
Manifold and valve systems
Controls, instruments and gauges
Drive shaft kit

Note: Product specifications are subject to change without notice
CBP Single Stage
High Volume Attack/Booster Pump

PERFORMANCE
Hale initial attack/booster pumps are designed and built to produce a wide range of pressures and volumes. However, the pressure and volume you can obtain safely depends on the torque capacity of the truck's transmission case, power takeoff and driveline components. All pump performance specs should be checked in advance, and the torque loads approved by the respective equipment manufacturer.

1. Performance based on tank operation using “average losses” for the 3 inches suction piping layout with a positive pump suction.
2. Performance based on a 10-foot life with 20-foot of 3 inches suction hose up to a 2,000 foot elevation using “average losses” for the truck's 3 inches suction piping.
3. Performance based on a 10-foot lift with 20-foot of 2-1/2 inches suction hose up to a 2,000 foot elevation using “average losses” for the truck's 2-1/2 inches suction piping.
*Actual pump performance will be subject to the limits/losses imposed by suction and discharge piping.
**NFPA rating available.

DIMENSIONS
Weight: 82 - 88 lbs (37.2-40 kg)
Length: 12.75” (324 mm)
Height: 15.5” (394 mm)
Width: 10 - 15” (278 mm)

Possible Positions of Discharge

CBP Selected Performance Data

<table>
<thead>
<tr>
<th>GPM</th>
<th>L/MIN</th>
<th>PSI</th>
<th>BAR</th>
<th>HP</th>
<th>KW</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>1515</td>
<td>100</td>
<td>6.9</td>
<td>45</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>350</td>
<td>1325</td>
<td>150</td>
<td>10.3</td>
<td>50</td>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>**250</td>
<td>945</td>
<td>150</td>
<td>10.3</td>
<td>34</td>
<td>25</td>
<td>1,2</td>
</tr>
<tr>
<td>150</td>
<td>570</td>
<td>250</td>
<td>17.2</td>
<td>44</td>
<td>33</td>
<td>1,2,3</td>
</tr>
<tr>
<td>50</td>
<td>190</td>
<td>400</td>
<td>27.6</td>
<td>60</td>
<td>45</td>
<td>1,2,3</td>
</tr>
</tbody>
</table>

ORIENTATION OF PUMP FOR ENGINE ROTATION POWER TAKEOFF

ORIENTATION OF PUMP FOR OPPOSITE ENGINE ROTATION POWER TAKEOFF